

Abstract—In this paper, we propose an automatic verification

technology of software patches for user virtual environments on IaaS
Cloud to decrease verification costs of patches. In these days, IaaS
services have been spread and many users can customize virtual
machines on IaaS Cloud like their own private servers. Regarding to
software patches of OS or middleware installed on virtual machines,
users need to adopt and verify these patches by themselves. This task
increases operation costs of users. Our proposed method replicates
user virtual environments, extracts verification test cases for user
virtual environments from test case DB, distributes patches to virtual
machines on replicated environments and conducts those test cases
automatically on replicated environments. We have implemented the
proposed method on OpenStack using Jenkins and confirmed the
feasibility. Using the implementation, we confirmed the effectiveness
of test case creation efforts by our proposed idea of 2-tier abstraction
of software functions and test cases. We also evaluated the automatic
verification performance of environment replications, test cases
extractions and test cases conductions.

Keywords—OpenStack, Cloud Computing, Automatic
verification, Jenkins.

I. INTRODUCTION

ECENT days, IaaS Cloud services have been progressed
and users can use virtual resources such as virtual

machines, virtual networks, virtual routers, virtual storages and
virtual load balancers on demand from IaaS service providers
(for example, Rackspace public cloud [1]). Users can install OS
and middleware such as DBMS, Web servers, application
servers and mail servers to virtual machines by themselves and
can customize virtual machines like their own private servers.

For OS and middleware deployed on virtual machines,
software patches of security vulnerability or additional
functions are released periodically from each software vendor.
Almost all IaaS virtual machine cases, users select and adopt
these patches to their virtual machines manually. Because there
is a risk of system failure when these patches are distributed,
most service providers set a contract that patches adoptions are
users’ responsibilities. Therefore, users need to distribute
patches to their virtual machines and verify their systems health
by themselves. This task increases users’ operation costs of
virtual machines.

If service providers distribute patches and verify user
systems health after patches distributions, users’ operation
costs can be decreased. However, it takes a lot of effort for
service providers to verify distributed patches normality

Yoji Yamato is with Software Innovation Center, NTT Corporation, Tokyo

180-8585 Japan (phone: +81-422-59-4395; fax: +81-422-59-2699; e-mail:
yamato.yoji@lab.ntt.co.jp).

because each user environment and configuration of virtual
machine is different. Thus, no service provider verifies patch
normality after a patch distribution to each user virtual machine
currently.

In this paper, we propose an automatic verification
technology of software patches for user virtual environments
on IaaS Cloud to decrease users’ verification costs of patches.
Our proposed method replicates user virtual environments,
extracts verification test cases for user virtual environments
from test case DB, distributes patches to virtual machines on
replicated environments and conducts those test cases
automatically on replicated environments. We implement the
proposed method on OpenStack [2] using Jenkins and confirm
the feasibility of automatic selections and conductions of test
cases based on user virtual environments. Using the
implementation, we confirm the effectiveness of test case
creation efforts by our proposed idea of 2-tier abstraction of
software functions and test cases. We also evaluate automatic
verification performances.

The rest of this paper is organized as follows. In Section II,
we introduce IaaS platforms such as OpenStack, existing
automatic test tools and clarify problems of virtual machine
patches verifications for service providers. In Section III, we
propose an automatic verification technology of software
patches for user virtual machines and describe a design to solve
the problems of existing methods. In Section IV, we implement
the proposed method, confirm the feasibility and evaluate test
case creation costs and automatic verification performances.
We conclude the paper in Section V.

II. PROBLEMS OF EXISTING TECHNOLOGIES

A. Outline of IaaS Platforms

According to the definition of the United States NIST
(National Institute of Standards and Technology) [3], Cloud
service models can be divided SaaS (Software as a Service),
PaaS (Platform as a Service) and IaaS (Infrastructure as a
Service). Virtual machines’ OS and middleware of SaaS and
PaaS are managed by service providers and they can verify
software patches of OS and middleware easily. However, IaaS
provides only hardware computer resources of CPU or Disk via
networks, OS or middleware of virtual machines are
customized by users and users need to adopt patches by
themselves. This paper targets patches of virtual machines on
IaaS Cloud.

OpenStack [2], CloudStack [4] and Amazon Web Services
[5] are major IaaS platforms. Basically, an idea of our proposal
is independent on IaaS platform. But for the first step, we
implement a prototype of proposed method on OpenStack (see,

Automatic Verification Technology of Virtual Machine
Software Patch on IaaS Cloud

Yoji Yamato

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

347International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

Section IV). Therefore, we explain OpenStack for an example
of IaaS platforms in this section. Note that functions of
OpenStack are similar to other IaaS platforms such as
CloudStack and Amazon Web Services. For example, our
method uses Heat [6] which is a template deployment
technology of OpenStack, Amazon Web Services have a
similar function called Amazon CloudFormation [7].

Fig. 1 OpenStack function blocks

OpenStack is composed of the function blocks which

manage each logical/virtual resource and the function blocks
which provides Single Sign On authentication among other
function blocks and orchestration function of other function
blocks. Fig. 1 shows a diagram of OpenStack function blocks.
Neutron controls virtual networks. OVS (Open Virtual Switch)
[8] and other software switches can be used as a virtual switch.
Nova controls virtual machines. KVM (Kernel based Virtual
Machine) [9], Xen [10] and others can be used as a hypervisor
of virtual machines. OpneStack provides two storage
management function blocks. Cinder for block storages and
Swift for object storages, both storages are used for retaining
data. Glance manages image files for virtual machines. Heat
orchestrates these function blocks and provisions multiple
virtual resources according to a template text file. Keystone is a
base which performs integrated authentications of these
function blocks. The functions of OpenStack are used through
REST (Representational State Transfer) APIs. There is also
Web GUI called Horizon to use the functions of OpenStack.
Ceilometer is a monitoring function of virtual resource usages.

OpenStack major version is released once a half-year and the
latest version name is Juno.

B. Problems of Existing Automatic Verification Technologies

There are some tools to enable automatic tests such as
Jenkins [11] and Selenium [12]. Jenkins is a tool to support
Continuous Integration and can conduct not only building
software but also regression test cases for changed software
during software life cycle. Selenium is a tool to enable
automatic Web tests, captures actions of Web browsers and
repeats captured Web actions or conducts Web actions
described by Selenium IDE scripts.

However, these tools objectives are recursive conductions of
same regression test cases. There are two problems for IaaS
virtual machines patch verifications.

i) Service providers cannot conduct different test cases for
plural user virtual environments with different
configurations. For example, we consider a case that user
A installed Windows 2012 server and MySQL 5.1 to a
virtual machine and user B installed Windows 2012 server
and Apache 2.1 to a virtual machine. In this case, a same
patch of Windows 2012 server is distributed to both virtual
machines but verification test cases should be different to
confirm each user system health.

ii) Preparing automatic test cases for each user environment
beforehand is not realistic because service providers need
much preparation efforts. Reference [13] is a work to
enable effective regression tests for Cloud platform
development using Jenkins and Selenium. However, this
paper target is an IaaS platform development and
regression tests of user virtual machines deployed on IaaS
platform are out of scope. This paper describes that 3-5
times of efforts are needed for automatic test cases
preparations of Jenkins and Selenium compared with
normal test cases conductions.

III. PROPOSAL OF AUTOMATIC VERIFICATION TECHNOLOGY

OF VIRTUAL MACHINES PATCHES

We propose an automatic verification technology of software
patches for user virtual environments on IaaS Cloud to decrease
users’ verification costs of patches. Section III A explains
automatic verification steps. A figure shows OpenStack, but
OpenStack is not a precondition of proposed method. III. B
explains a processing of automatic test case selection which is a
core processing of the steps in detail.

A. Automatic Verification Steps

Our proposed system is composed of automatic verification
functions, test case DB and an IaaS controller such as
OpenStack. Fig. 2 shows processing steps of automatic
verification when a patch for virtual machines is released.

Service providers manage contract DB in which each user's
policy of patch verification whether a user would like to verify
a released patch or not. For example, we consider a case of
Windows 2012 server patch release. Service providers extract
users who would like to verify Windows 2012 patch for their
virtual machines from contract DB. Automatic verification
steps are as follows.
1) Operators specify a patch and a user tenant (user virtual

environment) to which a patch is distributed to automatic
verification functions. A user is extracted from contract
DB. A tenant is an each user logical space where virtual
resources such as virtual machines, virtual routers and
virtual volumes are deployed.

2) Automatic verification functions replicate a user virtual
environment. Firstly, automatic verification functions
request an IaaS controller to extract a template of user
tenant of virtual resources. A template is a JSON text file
with virtual resources structure information and it is used
by OpenStack Heat or Amazon CloudFormation to
provision virtual resources in one batch process. Note that
current OpenStack Heat cannot extract a template from a

Cinder

Swift

Nova

REST API

K
ey

st
o

n
e

Horizon

C
ei

lo
m

et
er

Neutron

H
ea

t
program

Glance

browser

storage

Virtual
Machine

Virtual
Network

OpenStack

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

348International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

user tenant directly, we use complement technology of
Heat [14] for OpenStack tenant replication case.

Fig. 2 Steps of automatic verification of virtual machines patches

Secondly, automatic verification functions request an IaaS
controller to deploy an extracted template with target tenant ID,
then an IaaS controller provisions virtual resource of user
tenant on the specified tenant. When virtual volumes are
replicated, user data of software and others is extracted as an
RAW image file, then the image file data is copied to a virtual
volume on the specified replicated tenant. Replicated virtual
resources are deployed on tenants managed by service
providers not to charge users.
3) Automatic verification functions acquire environmental

data of installed software. Specifically, the data of what
software is installed on each virtual machine is acquired
from replicated virtual environments.

4) Automatic verification functions select test cases for patch
verifications from test case DB. Test cases are conducted
after patches distributions to virtual machines but some test
cases may need to set verification data before patches
distributions. To select test cases, virtual resources
structure information of template (step 2) and software
environmental data (step 3) are used. This is a core step of
automatic verification, thus we explain this detail in
Section III B.

5) Automatic verification functions distribute a specified
patch to replicated virtual machines. Existing patch
distribution methods corresponding to virtual machine
software such as Windows update can be used. Note that
all virtual machines on a replicated environment are
applied a patch in this step. This is because software
version gap between virtual machines may cause
unexpected behaviors. For example, software versions of
DBMS need to be same in High-Availability cluster of DB
servers.

6) Automatic verification functions conduct test cases
selected in Step4 for replicated virtual environments with
distributed patches.

Test case confirmation targets are 2 kinds; one is function
normality confirmation after patch and the other is data
normality confirmation after patch. Regarding to data
normality confirmation test cases, because those need to
prepare data to be confirmed before patch distribution,
automatic verification functions set sample data to virtual
resources between Step 4 and Step 5. For example, to confirm a
Japanese web page expression, a test case needs to set Japanese
sample html before patch and to check html characters garbling
after patch.

Although a patch is distributed to only virtual machines,
verification test cases are conducted for all virtual resources in
replicated user tenant. In a case that virtual machines with web
servers are under one virtual load balancer, web server
verifications after patch distributions need to be tested via
virtual load balancer.

We use an existing tool Jenkins for conducting test cases
selected from test case DB.
7) Automatic verification functions collects results of test

cases for each user environment using Jenkins analysis
functions. Collected data is notified to operators or mailed
to users. Users can judge a patch adoption based on this
report. And if users agree automatic patches distributions
beforehand, automatic verification functions distribute
patches to virtual machines on user actual tenants when all
test cases results on replicated user environments are good.

8) Operators may retain replicated environments to skip step
2 in next verification when there are sufficient physical
resources for virtual resources deployment. Or operators
may delete replicated virtual resources after patch

Autom atic Verification functions

O penStack

Hyper
visor

O VS

LR

VM
VO L
VM

Hyper
visor

O VS
Hyper
visor

O VS

Nova

Neutron

User

O penStack API

O penStackDB

O perator

VO L

Heat

User tenant

LR

VM
VO L

VM

VO L

O perator tenant

Test case
DB

1. Specify User tenant ID,
a patch to be distributed

2. Replicate
User tenant

3. G et tenant
inform ation

4. Extract test cases
5. Distribute patches
6. C onduct test cases

7. G ather test cases results

8. Delete a replicated tenant

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

349International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

verification if they do not have much physical resources.
By deleting virtual resources on which patch verification is
already completed, operators can verify patches of other
users’ virtual environments using same physical resources.
Because OpenStack Heat provides stack-delete API,
operators can delete virtual resources directly by one
OpenStack API call. Note that automatic verification
functions do not have to provide deleting functions of
virtual resources.

In this way, automatic verification functions verify a patch
for each user virtual environment. Operators repeat these steps
for extracted users by scripts or manual operations when a
patch is released from a software vendor.

B. Test Cases Extraction Method

In this subsection, we explain step 4 of test cases selections
which is a core step of our proposal in detail.

Test case DB retains two types information. One is software
relation information. Relations of software and software group
which is a concept of bundle software and function group
which is a concept of bundle software group are stored. The
other is test case information that test case itself which can be
conducted by Jenkins and attribute information of the test case.

Fig. 3 shows an example of software relation information.
We consider a case that a function group is DB, software
groups are Oracle, MySQL, Postgre SQL and so on. Individual
software belongs to software groups, for example Oracle 10g,
11g belong to Oracle software group. Function groups can be
defined by operators such as OS, DB, mail server, web server,
application server and so on.

Fig. 4 shows an example of test case information. Test case
DB stores a test case itself and its attribute data. A test case
class is information which shows the test case is intended for
each software, each software group or each function group. A
target subject is information whether verification target is
function or data.

For example, DB table CRUD (Create, Read, Update,
Delete) is a test case of sample data CRUD by SQL and can be
used commonly for DB function group because all Relational
DB have SQL CRUD functions. And DB table CRUD target is
a function confirmation, thus a target subject is "function". In
another example, a test case of registered Japanese character
garbling check is a test case of DB function group. And data to
be checked is registered data before patch distribution, thus a
target subject is "data". If a target subject is "data", automatic
verification functions need to prepare and insert confirmation
data before patch distribution. In another example, table data
CRUD by phpMyAdmin is a test case for MySQL software
group and a target subject is "function" because phpMyAdmin
is a Web GUI access tool only for MySQL.

Fig. 5 shows Entity-Relationship diagram of test case DB.
Function group is a bundle of software groups and relates
function group test cases. Software group is a bundle of
software and relates software group test cases. Software relates
software test cases.

Service providers prepare these data and test cases in test
case DB before patch verifications. Next, we explain a

procedure of test cases selections for each user environment
using software relation data and test case attribute data when a
new patch is released.

Function group Softw are group Softw are

O S W indow s W indow s Server 2012
W indow s 8.1

RH EL RH EL 7.0
RH EL 6.1

D B O racle O racle11g
O racle 10g

M ySQ L M ySQ L 5.0
M ySQ L 4.0

W eb Apache Apache 2.1
Apache 2.2

IIS IIS 8.0
IIS 8.5

Fig. 3 Examples of software relation

Function group Softw are group Softw are Test case

D B Table C RU D
D B Japanese character garbling check
D B O racle
D B M ySQ L Access by phpM yAdm in
D B Postgre SQ L

Test case Test case class target subject

Table C RU D D B function group function
Japanese character garbling check D B function group data

O racle softw are group
Access by phpM yAdm in M ySQ L softw are group dunction

Postgre SQ L softw are group

Fig. 4 Examples of test case information

Fig. 5 Entity-Relationship diagram of test case DB

Automatic verification functions extract software
information of OS and middleware which user virtual machines
use from step 3 environmental information of replicated user
tenant. From the information of installed software list,
automatic verification functions search what software group the
software is belong to and what function group the software
group is belong to.

Automatic verification functions select test cases using this
software relation information. Specifically, automatic
verification functions select corresponding function group test
cases, corresponding software group test cases and
corresponding software test cases respectively for each
installed software.

Although Test case DB can retain software test cases data,
test cases creation and preparation costs of service providers are
too large for each software. Therefore, it is better for service

Function
group

Software
group

Software

example：
OS, DB, Web,
Mail, AP server

example：
Windows2012,
MySQL5.1
JBoss5.1

example：
Windows,
MySQL,
JBoss

Software
Test case

example：
Windows file CRUD
CRUD by phpMyAdmin
EJB execution on JBoss

Software group
Test case

Function group
Test case

example：
Ping communication,
Mail send/ recieve

●

●

●

●

●

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

350International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

providers to prepare upper-tier (function group or software
group) test cases as possible. It means that service providers do
not have to prepare software test case of Fig. 5 in practical use.
Abstracting software to software group and function group in
our proposal, service providers can verify virtual machines
patches with small number test cases preparations.

IV. EVALUATION OF AUTOMATIC VERIFICATION

TECHNOLOGY OF VIRTUAL MACHINES PATCHES

In this section, we implement proposed method and confirm
the feasibility of automatic verification for virtual machine
patches. We also evaluate test cases creation costs and
performances using implemented functions.

A. Implementation of Automatic Verification Functions

We implemented automatic verification functions of Fig. 2
on OpenStack Folsom. Folsom is a previous (not latest)
OpenStack version name. Automatic verification functions are
implemented on OS Ubuntu 12.04, Tomcat 6.0 and Jenkins
1.532.2 by Python 2.7.3. Implemented Python code is less than
10 k Line.

We confirmed proposed behaviors of automatic verification
functions using subsection IV.C environments. Specifically, we
confirmed that verification test cases are selected differently
based on each installed middleware when same OS patch is
distributed to one virtual machine with MySQL and another
virtual machine with Postgre SQL.

B. Evaluation of Test Cases Creation Costs for Automatic
Verification

Our method plans to reduce prepared test cases by 2-tier
abstractions of installed software and test cases. For example,
about 300 regression test cases are conducted on each patch for
a production hosting service which is mainly used for mail and
web [15].

Because we cannot prepare test cases of various user
services, we evaluate test cases creation costs for DB function
group in this subsection.

1. Test Case Conditions

Patch type: CentOS 6 periodical bug fixes patches.
User numbers with virtual machines of CentOS 6: 12 users.
User environment configuration:

- Each user tenant has 2 virtual machines, 2 virtual volumes,
2 virtual Layer 2 networks and 1 virtual router. 2 virtual
machines have same DBMS software.

- Virtual machines of each tenant use MySQL 4.1, MySQL
5.1, MySQL 5.5, MySQL 5.6, PostgreSQL 8.4,
PostgreSQL 9.1, PostgreSQL 9.2, PostgreSQL 9.3, Oracle
11.1, Oracle 11.2, Oracle 12.1.0.1, Oracle 12.1.0.2.

Verification test cases numbers after patch distributions:
- DB function group test cases; 10.

For example, test case of CRUD by SQL which can be used
for all Relational DB commonly.
- Each software group test case; 5.

MySQL, Postgre SQL, Oracle software group has 5 test
cases respectively. For example, phpMyAdmin CRUD check is
a test case of MySQL software group.

- Each software test case; 0.
We do not prepare test cases for each software.

2. Results of Test Cases Creation

Using implemented function, we conduct automatic
verification test cases after CentOS 6 bug fixes patches for 12
user virtual machines.

In the results, 15 test cases are conducted for each user
virtual machine and total 180 test cases are conducted
automatically. Prepared test cases by service providers are only
25 but our proposed idea of software group and function group
abstraction can select test cases based on user environments
effectively. Although, automatic test cases of Jenkins
preparations take about 3 times efforts of normal test cases
manual conduction [13], it is more effective than conducting
each user and each software test cases manually.

C. Performance Evaluation of Automatic Verification

Implemented automatic verification functions of virtual
machine patches replicate virtual resources by OpenStack Heat,
distribute patches to virtual machines and conduct selected test
cases. We evaluate performances of total processing time and
each section processing time.

1. Measurement Conditions

Processing steps of automatic verification to be measured:
Case1. template and image extraction, template deployment,

tester resources preparation such as Internet connection
setting, environment information acquisition, patch
distribution, test cases conduction, virtual resources
deletion.

Case2. environment information acquisition, patch distribution,
test cases conduction. (We consider the case that service
providers replicate virtual resources beforehand and do
not delete them after verifications)

User tenant configuration:
- Each user tenant has 2 virtual machines, 2 virtual volumes,

2 virtual Layer 2 networks and 1 virtual router.
- Each virtual machine’s specification is 1 CPU with 1 Core,

1 GB RAM and 1 attached virtual volume which size is 10
GB and installed OS is CentOS 6.

- Either MySQL 5.6 or Postgre SQL 9.3 is installed on each
virtual volume for virtual machine DBMS software.

Patch type: CentOS 6 periodical bug fixes patches.
Selected test cases number: 15.

- Same test cases in subsection IV.B.
- 10 for DB function group and 5 for MySQL software group

or Postgre SQL software group.
Concurrent thread numbers:

- 1 thread, 3 threads, 5 threads

1. Performance Measurement Environment

Fig. 6 shows performance measurement environments. Fig. 6
omits maintenance servers such as syslog or backup servers and
redundant modules such as heartbeat. Beside there are many
servers for OpenStack virtual resources, the main server of this
measurement is an automatic verification server. These servers
are connected with Gigabit Ethernet.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

351International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

Fig. 6 Performance measurement environment

TABLE I
EACH SERVER SPECIFICATION AND USAGE

Hardware physical or
VM

Name Main usage CPU RAM
(GB)

HDD NIC

model name core logical
(GB)

HP
ProLiantBL460c G6

physical KVM host Quad-Core Intel Xeon 2533
MHz×2

8 48 300 4

VM OpenStack API server OpenStack stateless process such as
API

 assign: 4 assign: 8 assign: 60

VM Template server template management for tenant
replication

 assign: 4 assign: 8 assign: 60

HP
ProLiantBL460c G6

physical KVM host Quad-Core Intel Xeon 2533
MHz×2

8 48 300 4

VM Glance application server receive requests related to glance assign: 8 assign:
32

assign: 150

HP
ProLiantBL460c G1

physical DB OpenStack & Test case DB Quad-Core Intel Xeon 1600
MHz×2

8 24 72 4

HP
ProLiantBL460c G1

physical OpenStack-Network used for OpenStack logicalnetwork
resources

Quad-Core Intel Xeon 1600
MHz×2

8 18 72 6

HP
ProLiantBL460c G1

physical OpenStack-Volume used for OpenStacklogical volume
resources

Quad-Core Intel Xeon 1600
MHz×2

8 18 72 6

HP
ProLiantBL460c G1

physical OpenStack-Hypervisor used for OpenStack VM resources Quad-Core Intel Xeon 1600
MHz×2

8 24 72 4

IBM HS21 physical Automatic verification
server

proposed automatic verification
server

Xeon E5160 3.0GHz×1 2 2 72 1

IBM HS21 physical DMZ-Load Balancer Load Balancer for Internet access Xeon E5160 3.0GHz×1 2 2 72 1

IBM HS21 physical Internal-Load Balancer Load Balancer for Internal access Xeon E5160 3.0GHz×1 2 2 72 1

IBM HS21 physical KVM host Xeon E5160 3.0GHz×1 2 2 72 1

VM User VM VM for user terminal assign: 1 assign: 1 assign: 20

VM Operator VM VM for operator terminal assign: 1 assign: 1 assign: 20

EMC VNX5300 physical iSCSI storage iSCSI storage for user volume 500

EMC VNX5300 physical NFS storage NFS storage for Image 500

In detail, Fig. 6 shows physical and virtual servers and
modules in each server. For example in OpenStack API server
case, a OpenStack API server is a virtual server, is in both
Internet segment and Control segment and has modules of
Cinder scheduler, Cinder API, nova-api, keystone,
glance-registry and nova-scheduler. Two servers are for
redundancy. Other servers are proposed automatic verification

server, a user terminal and an operator terminal, Glance
application servers for image upload, a NFS storage for image,
Template servers for tenant replication, a DB for OpenStack
and Test cases, OpenStack servers for virtual resources, iSCSI
storages for these servers data and load balancers for load
balancing.

Table I shows each server specification and usage. For

legend

DMZ-Load Balancer KVM

Glance application server
ldirectord

KVM

Glance application server

glance-api apache

nova-novncproxy

glance-api apache

nova-novncproxy

Internal-
Load Balancer

ldirectord

KVM

NFS
Storage
for G lance

iSC SI
Storage

iSC SI
Storage

iSC SI
Storage

OpenStack-Volume

C indervolum e

OpenStack-Volume

C indervolum e

・・

OpenStack-Hypervisor

O VS

nova-com pute

OpenStack-Hypervisor

O VS

nova-com pute

・・

iSC SI
Storage

DB (OpenStack&Test Case)

RabbitM Q

consoleauth M ySQ L

quantum

OpenStack-Network

O VS

quantum -linuxbridge-agent

Q uantum -L3-Agent

Q uantum -DHC P-Agent

・・
OpenStack-Network

O VS

quantum -linuxbridge-agent

Q uantum -L3-Agent

Q uantum -DHC P-Agent

Physical Server

Virtual Server

M odule

Internet segment Control segment

KVM

User terminal

Operator terminal

Template server
for tenant replication

Openstack API server

C inder scheduler

keystone

glance-registrynova-api

Nova-scheduler

C inderAPI

apache

tom cat

API W eb G UI

O penStack

com m unicate
process

KVM

Template server
for tenant replication

Openstack API server

C inder scheduler

keystone

glance-registrynova-api

Nova-scheduler

C inderAPI

apache

tom cat

API W eb G UI

O penStack
com m unicate

process

Automatic verif ication
server

apache

tom cat O penStack
com m unicate

process

Verification process

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

352International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

example in DB case (6th row), the hardware is HP ProLiant
BL460c G1, the server is a physical server, the name is DB, the
main usage is OpenStack and Test case DB, CPU is Quad-Core
Intel Xeon 1600 MHz*2 and Core number is 8, RAM is 24 GB,
assigned HDD is 72 GB and NIC (Network Interface Card)
number is 4.

3. Performance Measurement Results

Fig. 7 (a) shows each processing time of automatic
verification of Case 1. All of 1, 3 and 5 thread cases, template
and image extraction, template deployment and virtual
resources deletion take much time beside a patch distribution
and test cases conductions take 4 minutes. It is clear that
OpenStack tenant replication processing becomes a bottle neck.

If it takes much time of template extraction and deployment,
total processing time becomes long and service providers
cannot distribute released patches soon. Therefore, we think it
is effective that we complete replications of user environments
much before patches verifications.

Fig. 7 Performance measurement results: (a) Case 1 each processing
time of automatic verification (b) Case 2 each processing time of

automatic verification

Fig. 7 (b) shows each processing time of Case 2 when we
skip step 2 (tenant replication) and step 8 (replicated virtual
resources deletion). In this case, because OpenStack load is
little, automatic verification functions can verify plural user
environments in parallel and it takes only 4 minutes for total
processing even if with 5 concurrent threads.

V. CONCLUSION

In this paper, we propose an automatic verification
technology of software patches for user virtual environments
on IaaS Cloud to decrease users’ verification costs of patches.
Our proposed method replicates user virtual environments,

extracts verification test cases for user virtual environments
from test case DB, distributes patches to virtual machines on
replicated environments and conducts those test cases
automatically on replicated environments. We have
implemented our method on OpenStack using Jenkins and
evaluated a feasibility of functions, an effectiveness of test case
creation costs and a performance of automatic verification.

We confirmed automatic selections and conductions of
verification test cases on user virtual environments by the
implemented automatic verification functions. We confirmed
an effectiveness of test cases preparations of service provider
because our method abstracts software of user virtual machines
to software group and function group and selects corresponding
verification test cases of each tier. In our evaluation, only 25
test cases are prepared for DB middleware but 15 test cases are
conducted respectively for 12 user virtual machines with
different DB middleware (total conducted test cases are 180).
Performance measurements show that automatic verifications
of virtual environment replications, patch distributions and test
cases conductions take more than 50 minutes. However, those
take about only 4 minutes when we replicate virtual
environments beforehand. Automatic verifications are
conducted on replicated environments, it is better to run in the
background of user actual usages.

In the future, we will implement automatic verification
functions of software patches not only for OpenStack but also
for other IaaS platforms such as CloudStack and Amazon Web
Services. We will also increase test cases for actual use cases of
IaaS virtual machines. Then, we will cooperate with IaaS Cloud
service providers or VPS (Virtual Private Servers) [16] hosting
providers to provide managed services which service providers
distribute software patches to user virtual machines using our
automatic verification functions

REFERENCES
[1] Rackspace public cloud powered by OpenStack web site,

http://www.rackspace.com/cloud/
[2] OpenStack web site, http://www.openstack.org/
[3] P. Mell, and T. Grance, "The NIST Definition of Cloud Computing v15,"

National Institute of Standards and Technology, Oct. 2009.
[4] CloudStack web site, http://cloudstack.apache.org/
[5] Amazon Elastic Compute Cloud web site, http://aws.amazon.com/ec2
[6] OpenStack Heat web site, https://wiki.openstack.org/wiki/Heat.
[7] Amazon CloudFormation web site,

http://aws.amazon.com/cloudformation/
[8] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado and S. Shenker,

"Extending Networking into the Virtualization Layer," In Proceedings of
8th ACM Workshop on Hot Topics inNetworks (HotNets-VIII), Oct.
2009.

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori "kvm: the Linux
virtual machine monitor," In OLS '07: The 2007 Ottawa Linux
Symposium, pp.225-230, July 2007.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, "Xen and the art of virtualization,"
In proceedings of the 19th ACM symposium on Operating Systems
Principles (SOSP'03), pp.164 -177, Oct. 2003.

[11] Jenkins web site, http://jenkins-ci.org/
[12] Selenium web site, http://www.seleniumhq.org/
[13] Y. Yamato, N. Shigematsu and N. Miura, “Evaluation of Agile Software

Development Method for Carrier Cloud Service Platform
Development,”IEICE Transactions on Information & Systems,
Vol.E97-D, No.11, 2014.

(a)

(b)

pr
oc

es
si

ng
 ti

m
e

pr
oc

es
si

ng
 ti

m
e

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

353International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

[14] Y. Yamato, M. Muroi, K. Tanaka and M. Uchimura, “Development of
Template Management Technology for Easy Deployment of Virtual
Resources on OpenStack,” Springer Journal of Cloud Computing, DOI:
10.1186/s13677-014-0007-3, July 2014

[15] Y. Yamato, S. Naganuma, M. Uenoyama, M. Kato, M. Parmer and B.
Olsen, "Development of Low User Impact and Low Cost Server
Migration Technology for Shared Hosting Services," IEICE transactions
on Communication, Vol.J95-B, No.4, pp.547-555, Apr. 2012. (in
Japanese)

[16] P.-H. Kamp, and R.N.M. Watson, "Jails: Confining the Omnipotent root,"
In Proceedings of the 2nd International SANE Conference, May 2000.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:9, No:1, 2015

354International Scholarly and Scientific Research & Innovation 9(1) 2015 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:9

, N
o:

1,
 2

01
5

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
00

70
5/

pd
f

