WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10000623,
	  title     = {Effect of Precursors Aging Time on the Photocatalytic Activity of ZnO Thin Films},
	  author    = {N. Kaneva and  A. Bojinova and  K. Papazova},
	  country	= {},
	  institution	= {},
	  abstract     = {Thin ZnO films are deposited on glass substrates via
sol–gel method and dip-coating. The films are prepared from zinc
acetate dehydrate as a starting reagent. After that the as-prepared
ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15 and 30 days).
Nanocrystalline thin films are deposited from various sols. The
effect ZnO sols aging time on the structural and photocatalytic
properties of the films is studied. The films surface is studied by
Scanning Electron Microscopy. The effect of the aging time of the
starting solution is studied in the photocatalytic degradation of
Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments
are conducted upon UV-light illumination and in complete darkness.
The variation of the absorption spectra shows the degradation of RB5
dissolved in water, as a result of the reaction, occurring on the surface
of the films and promoted by UV irradiation. The initial
concentrations of dye (5, 10 and 20 ppm) and the effect of the aging
time are varied during the experiments. The results show, that the
increasing aging time of starting solution with respect to ZnO
generally promotes photocatalytic activity. The thin films obtained
from ZnO sol, which is aged 30 days have best photocatalytic
degradation of the dye (97,22%) in comparison with the freshly
prepared ones (65,92%). The samples and photocatalytic
experimental results are reproducible. Nevertheless, all films exhibit
a substantial activity in both UV light and darkness, which is
promising for the development of new ZnO photocatalysts by sol-gel
method.
},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {9},
	  number    = {3},
	  year      = {2015},
	  pages     = {406 - 411},
	  ee        = {https://publications.waset.org/pdf/10000623},
	  url   	= {https://publications.waset.org/vol/99},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 99, 2015},
	}