Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30526
Various Modifications of Electrochemical Barrier Layer Thinning of Anodic Aluminum Oxide

Authors: M. Michalska-Domańska, W. J. Stępniowski, W. Florkiewicz, M. Norek, E. Kościuczyk, T. Czujko


In this paper, two options of anodic alumina barrier layer thinning have been demonstrated. The approaches varied with the duration of the voltage step. It was found that too long step of the barrier layer thinning process leads to chemical etching of the nanopores on their top. At the bottoms pores are not fully opened what is disadvantageous for further applications in nanofabrication. On the other hand, while the duration of the voltage step is controlled by the current density (value of the current density cannot exceed 75% of the value recorded during previous voltage step) the pores are fully opened. However, pores at the bottom obtained with this procedure have smaller diameter, nevertheless this procedure provides electric contact between the bare aluminum (substrate) and electrolyte, what is suitable for template assisted electrodeposition, one of the most cost-efficient synthesis method in nanotechnology.

Keywords: anodic aluminum oxide, anodization, nanopores, barrier layer thinning

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156


[1] S. Ono, N. Masuko, “Evaluation of pore diameter of anodic porous films formed on aluminum,” Surf. Coat. Technol., vol. 169-170, 2003, pp. 139-142
[2] S. Ono, M. Saito, H. Asoh, “Self-ordering of anodic porous alumina formed in organic acid electrolytes,” Electrochim. Acta, vol. 51, 2005, pp. 827-833
[3] W. J. Stępniowski, M. Norek, M. Michalska-Domańska, Z. Bojar, “Ultra-small nanopores obtained by self-organized anodization of aluminum in oxalic acid at low voltages,” Mater. Lett., vol. 111, 2013, pp. 20-23
[4] W. J. Stępniowski, Z. Bojar, “Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features,” Surf. Coat. Technol., vol. 206, 2011, pp. 265-272
[5] O. Nishinaga, T. Kikuchi, S. Natusi, R.O. Suzuki, “Rapid fabrication of self-ordered porous alumina with 10-/sub-10-nm-scale nanostructures by selenic acid anodizing,” Sci. Reports, vol. 3, 2013, pp. 2748
[6] T. Kikuchi, D. Nakajima, J. Kawashima, S. Natsui, R.O. Suzuki, “Fabrication of anodic porous alumina via anodizing in cyclicoxocarbon acids,” Appl. Surf. Sci., vol. 313, 2014, pp. 276-285
[7] X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng, G. Ding, H. Zeng, X. Xu, “Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid,” Surf. Coat. Technol., vol. 254, 2014, pp. 398–401
[8] Y. T. Pang, G. W. Meng, W. J. Shan, L. D. Zhang, X. Y. Gao, A.W. Zhao, Y.Q. Mao, ” Arrays of ordered Ag nanowires with different diameters in different areas embedded in one piece of anodic alumina membrane, Appl Phys A, vol. 77, 2003, pp. 717-720
[9] M. P. Proenca, C.T. Sousaa, J. Ventura, M. Vazquez, J. P. Araujo, “Ni growth inside ordered arrays of alumina nanopores: Enhancing the deposition rate,” Electrochim. Acta, vol. 72, 2012, pp. 215-21
[10] R. C. Furneaux, W. R. Rigby, A. P. Davidson, “The formation of controlled-porosity membranes from anodically oxidized aluminium,“ Nature, vol. 337, 1989, pp. 147-149
[11] J. M. Montero-Moreno, M. Belenguer, M. Sarret, C. M. Müller, “Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques,” Electrochim. Acta, vol. 54, 2009, pp. 2529–2535
[12] J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio,” Chem. Mater., vol.. 15, 2003, pp. 776-779
[13] Z. Wu, Y. Zhang, K. Du, “A simple and efficient combined AC–DC electrodeposition method for fabrication of highly ordered Au nanowires in AAO template,” Appl. Surf. Sci., vol. 265, 2013, pp 149-56
[14] A. J. Yin, J. Li, W. Jian, A. J. Bennet, J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition,” Appl. Phys. Lett., vol. 79, 2001, pp. 1039-41
[15] J. Qin, J. Nogue, M. Mikhaylova, A. Roig, J. S. Munoz, M. Muhammed, “Differences in the Magnetic Properties of Co, Fe, and Ni 250-300 nm Wide Nanowires Electrodeposited in Amorphous Anodized Alumina Templates,” Chem. Mater., vol. 17, 2005 pp. 1829-34
[16] G. A. Gelves, Z. T. M. Murakami, M. J. Krantz, J. A. Haber, „Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates,” J. Mater. Chem., vol. 16, 2006, vol. 16, pp. 3075–83
[17] S. Z. Chu, K. Wada, S. Inoue, S. Todoroki, “Fabrication and characteristics of nanostructures on glass by Al anodization and electrodeposition,” Electrochim. Acta, vol. 48, 2003, pp. 3147-53
[18] K. Nielsch, F. Müller, A. P. Li, U. Gösele, “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition,” Adv. Mater., vol. 12, 2000, pp. 582-6
[19] J. M. Montero-Moreno, M. Belenguer, M. Sarret, C. M. Mőller, “Production of alumina templates suitable for electrodeposition of nanostructures using stepped techniques,” Electrochim. Acta, vol. 54, 2009; pp. 2529-35
[20] S. Sousa, D. C. Leitao, J. Ventura, P. B. Tavares, J. P. Araujo, ”A versatile synthesis method of dendrites free segmented nanowires with a precise size control,” Nanoscale Res. Lett., vol. 7, 2012, pp. 168
[21] N. Winkler, J. Leuthold, Y. Lei, G. Wilde, ”Large-scale highly ordered arrays of freestanding magnetic nanowires,” J. Mater. Chem., vol. 22, 2012, pp. 16627-16632
[22] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, „Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates,” J. Phys. Chem., vol. 100, 1996; pp. 14037-47
[23] W. Lee, M. Alexe, K. Nielsch, U. Gösele, “Metal Membranes with Hierarchically Organized Nanotube Arrays,” Chem. Mater., vol. 17, 2005, pp. 3325-7
[24] W. Lee, R. Scholz, K. Nielsch, U. Gösele, „A Template-Based Electrochemical Method for the Synthesis of Multisegmented Metallic Nanotubes,” Angew. Chem. Int. Ed., vol. 44, 2005, pp. 6050 –4
[25] W. J. Stępniowski, W. Florkiewicz, M. Michalska-Domańska, M. Norek, T. Czujko, J. Electroanal. Chem. Volume 741, 2015, Pages 80- 86
[26] L. Zaraska, E. Kurowska, G. D. Sulka, M. Jaskuła, “Porous alumina membranes with branched nanopores as templates for fabrication of Yshaped nanowire arrays,” Journal of Solid State Electrochemistry, vol. 6, Issue 11, 2012, pp. 3611-3619