WASET
	%0 Journal Article
	%A A. Nassef and  S. Samy and  W. H. El Garaihy
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing
	%U https://publications.waset.org/pdf/10000442
	%V 97
	%X Equal channel angular pressing (ECAP) of
commercial Al-Mg-Si alloy was conducted using two strain rates.
The ECAP processing was conducted at room temperature and at
250°C. Route A was adopted up to a total number of four passes in
the present work. Structural evolution of the aluminum alloy discs
was investigated before and after ECAP processing using optical
microscopy (OM). Following ECAP, simple compression tests and
Vicker’s hardness were performed. OM micrographs showed that, the
average grain size of the as-received Al-Mg-Si disc tends to be larger
than the size of the ECAP processed discs. Moreover, significant
difference in the grain morphologies of the as-received and processed
discs was observed. Intensity of deformation was observed via the
alignment of the Al-Mg-Si consolidated particles (grains) in the
direction of shear, which increased with increasing the number of
passes via ECAP. Increasing the number of passes up to 4 resulted in
increasing the grains aspect ratio up to ~5. It was found that the
pressing temperature has a significant influence on the
microstructure, Hv-values, and compressive strength of the processed
discs. Hardness measurements demonstrated that 1-pass resulted in
increase of Hv-value by 42% compared to that of the as-received
alloy. 4-passes of ECAP processing resulted in additional increase in
the Hv-value. A similar trend was observed for the yield and
compressive strength. Experimental data of the Hv-values
demonstrated that there is a lack of any significant dependence on the
processing strain rate.

	%P 131 - 136