WASET
	%0 Journal Article
	%A Samuel Kaspi and  Sitalakshmi Venkatraman
	%D 2015
	%J International Journal of Electrical and Computer Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Enhanced Disk-Based Databases Towards Improved Hybrid In-Memory Systems
	%U https://publications.waset.org/pdf/10000348
	%V 97
	%X In-memory database systems are becoming popular
due to the availability and affordability of sufficiently large RAM and
processors in modern high-end servers with the capacity to manage
large in-memory database transactions. While fast and reliable inmemory
systems are still being developed to overcome cache misses,
CPU/IO bottlenecks and distributed transaction costs, disk-based data
stores still serve as the primary persistence. In addition, with the
recent growth in multi-tenancy cloud applications and associated
security concerns, many organisations consider the trade-offs and
continue to require fast and reliable transaction processing of diskbased
database systems as an available choice. For these
organizations, the only way of increasing throughput is by improving
the performance of disk-based concurrency control. This warrants a
hybrid database system with the ability to selectively apply an
enhanced disk-based data management within the context of inmemory
systems that would help improve overall throughput.
The general view is that in-memory systems substantially
outperform disk-based systems. We question this assumption and
examine how a modified variation of access invariance that we call
enhanced memory access, (EMA) can be used to allow very high
levels of concurrency in the pre-fetching of data in disk-based
systems. We demonstrate how this prefetching in disk-based systems
can yield close to in-memory performance, which paves the way for
improved hybrid database systems. This paper proposes a novel EMA
technique and presents a comparative study between disk-based EMA
systems and in-memory systems running on hardware configurations
of equivalent power in terms of the number of processors and their
speeds. The results of the experiments conducted clearly substantiate
that when used in conjunction with all concurrency control
mechanisms, EMA can increase the throughput of disk-based systems
to levels quite close to those achieved by in-memory system. The
promising results of this work show that enhanced disk-based
systems facilitate in improving hybrid data management within the
broader context of in-memory systems.

	%P 206 - 212