S-S Coupling of Thiols to Disulfides Using Ionic Liquid in the Presence of Free Nano-Fe2O3 Catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
S-S Coupling of Thiols to Disulfides Using Ionic Liquid in the Presence of Free Nano-Fe2O3 Catalyst

Authors: Askar Sabet, Abdolrasoul Fakhraee, Motahahre Ramezanpour, Noorallah Alipour

Abstract:

An efficient and green method for oxidation of thiols to the corresponding disulfides is reported using ionic liquid [HSO3N(C2H4OSO3H)3] in the presence of free nano-Fe2O3 at 60°C. Ionic liquid is selective oxidant for S-S Coupling variety aliphatic and aromatic of thiols to corresponding disulfide in the presence of free nano-Fe2O3 as recoverable catalyst. Reaction has been performed in methanol as an inexpensive solvent. This reaction is clean and easy work-up with no side reaction.

Keywords: Thiol, Disulfide, Ionic liquid, Free Nano-Fe2O3, Oxidation, Coupling.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1098918

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752

References:


[1] S.J. Behroozi, W. Kim, J. Dannaldson, K.S. Gates, 1,2-Dithiolan-3-one 1-Oxides: A Class of Thiol-Activated DNA- Cleaving Agents That Are Structurally Related to the Natural Product Leinamycin†,Biochemistry, 35 (1996) 1768-1774.W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123–135.
[2] S.J. Behroozi, W. Kim, K.S. Gates, Reaction of n-Propanethiol with 3H- 1,2-Benzodithiol-3-one 1-Oxide and 5,5-Dimethyl-1,2-dithiolan-3-one 1-Oxide: Studies Related to the Reaction of Antitumor Antibiotic Leinamycin with DNA, The Journal of Organic Chemistry, 60 (1995)3964-3966.
[3] D.C.G. Capozzi, G. Modena, S. Patai, The Chemistry of the Thiol Group, in, Wiley, New York, 1974, pp. 785.
[4] D.C. Jocelyn, Biochemistry of the Thiol Group, in, academic Press, NewYork, 1992, pp. 1.E. H. Miller, “A note on reflector arrays (Periodical style—Accepted for publication),” IEEE Trans. Antennas Propagat., to be published.
[5] J.R. Johnson, W.F. Bruce, J.D. Dutcher, Gliotoxin, The Antibiotic Principle of Gliocladium fimbriatum. I. Production, Physical and Biological Properties1, Journal of the American Chemical Society, 65 (1943) 2005-2009..
[6] E. Block, J. O'Connor, Chemistry of alkyl thiosulfinate esters. VII. Mechanistic studies and synthetic applications, Journal of the American Chemical Society, 96 (1974) 3929-3944.
[7] A.R. Hajipour, S.E. Mallakpour, Organic Reactions under Solid-State Conditions, Molecular Crystals and Liquid Crystals ScienceTechnology. Section A. Molecular Crystals and Liquid Crystals, 356 (2001) 371-387.
[8] A.R. Hajipour, I. Mohammadpoor -Baltork, G. Kianfar, Bis( 1-benzyl-4- aza-1-azoniabicyc1o
[2.2.2]octane) peroxodisulfate : A mild and efficient oxidant for oxidation of thiols, sulfides and aromatic amines to the corresponding disulfides, sulfoxides and azo compounds, Indian J Chem, 38B 607-610.
[9] A.R. Hajipour, I. Mohammadpoor-baltork, Solid-Phase Oxidation of Organic Compounds with Benzyltriphenylphosphonium Dichromate, Phosphorus, Sulfur, and Silicon and the Related Elements, 164 (2000) 145-151.
[10] S.V. Ley, C.A. Meerholz, D.H.R. Barton, Diaryl telluroxides as new mild oxidising reagents, Tetrahedron, 37, Supplement 1 (1981) 213-223.
[11] G. LW, G. JE, H. AR, M. H, A. M, A. NO, R. AE, Asymmetric interaction between rod cyclic GMP phosphodiesterase gamma subunits and alphabeta subunits., J. Biol. Chem., 280 (2005) 12585-12592.
[12] K.-T. Liu, Y.-C. Tong, A Facile Conversion of Thiols to Disulfides, Synthesis, 1978 (1978) 669-670.
[13] T.J. Wallace, Reactions of Thiols with Metals. II. Low-Temperature Oxidation by Soluble Metal Salts1, The Journal of Organic Chemistry, 31 (1966) 3071-3074.
[14] S. Tsuneo, O. Junzo, N. Hitosi, Activation and synthetic applications of thiostannanes. Efficient conversion of thiols into disulfides, Tetrahedron Letters, 31 (1990) 3591-3594.
[15] W.A. Pryor, D.F. Church, C.K. Govindan, G. Crank, Oxidation of thiols by nitric oxide and nitrogen dioxide: synthetic utility and toxicological implications, The Journal of Organic Chemistry, 47 (1982) 156-159.
[16] T. Aida, T. Akasaka, N. Furukawa, S. Oae, Catalytic Oxidation of Mercaptans by Iodine-Hydrogen Iodide System in Dimethyl Sulfoxide, Bulletin of the Chemical Society of Japan, 49 (1976) 1441-1442.
[17] M.H. Ali, M. McDermott, Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support, Tetrahedron Letters, 43 (2002) 6271-6273.
[18] J. Drabowicz, M. Mikołajczyk, A Simple Procedure for the Oxidation of Thiols to Disulphides by Means of Bromine/Aqueous Potassium Hydrogen Carbonate in a Two-Phase System, Synthesis, 1980 (1980) 32-34.
[19] J.R. Schaeffer, C.T. Goodhue, H.A. Risley, R.E. Stevens, Synthesis, stability, and sulfur-elimination reactions of some bis(N-arylimidoyl) disulfides, The Journal of Organic Chemistry, 32 (1967) 392-395.
[20] A. McKillop, D. Koyunçu, A. Krief, W. Dumont, P. Renier, M. Trabelsi, Efficicient, high yield, oxidation of thiols and selenols to disulphides and diselenides, Tetrahedron Letters, 31 (1990) 5007-5010.
[21] J. Choi, N.M. Yoon, Synthesis of Disulfides by Copper-Catalyzed Disproportionation of Thiols, The Journal of Organic Chemistry, 60 (1995) 3266-3267.
[22] K. Ramadas, N. Srinivasan, A Convenient Synthesis of Disulfides and Sulfenamides, Synthetic Communications, 26 (1996) 4179-4183.
[23] P. Salehi, A. Farrokhi, M. Gholizadeh, Oxidative Coupling of Thiols by Pyridinium Chlorochromate in Solution and Solvent Free Conditions, Synthetic Communications, 31 (2001) 2777-2781.
[24] R.S. Varma, H.M. Meshram, R. Dahiya, Solid State Oxidation of Thiols to Disulfides Using Ammonium Persulfate, Synthetic Communications, 30 (2000) 1249-1255
[25] N.A. Noureldin, M. Caldwell, J. Hendry, D.G. Lee, Heterogeneous Permanganate Oxidation of Thiols, Synthesis, 11 (1998) 1587-1589.
[26] B.J. Evans, J.T. Doi, W.K. Musker, Fluorine-19 NMR study of the reaction of p-fluorobenzenethiol and disulfide with periodate and other selected oxidizing agents, The Journal of Organic Chemistry, 55 (1990) 2337-2344.
[27] A. Shaabani, D.G. Lee, Solvent free permanganate oxidations, Tetrahedron Letters, 42 (2001) 5833-5836.
[28] N. Iranpoor, H. Firouzabadi, A.-R. Pourali, Dinitrogen tetroxide supported on polyvinylpyrrolidone (PVP–N2O4): a new nitrosating and coupling agent for thiols and a selective oxidant for sulfides and disulfides, Tetrahedron, 58 (2002) 5179-5184.
[29] S.T.A. Shah, K.M. Khan, M. Fecker, W. Voelter, A novel method for the syntheses of symmetrical disulfides using CsF–Celite as a solid base, Tetrahedron Letters, 44 (2003) 6789-6791.
[30] S. Werner, M. Haumann, P. Wasserscheid, Ionic Liquids in Chemical Engineering, Annual Review of Chemical and Biomolecular Engineering, 1 (2010) 203-230.
[31] L.K. Yeung, R.M. Crooks, Heck Heterocoupling within a Dendritic Nanoreactor, Nano Letters, 1 (2000) 14-17.
[32] X.Y. P, T.Z. J, L.L. W, Chinese Journal of Catalysis, 25 (2004) 331-338.
[33] T. Tabari, H. Tavakkoli, Fabrication and Characterization of Perovskite- Type Oxide LaFe0.9Co0.1O3 Nanoparticles and Its Performance in Aerobic Oxidation of Thiols to Disulfide, Chinese Journal of Catalysis, 33 (2012) 1791-1796.
[34] J. Yan, H. Tao, M. Zeng, J. Tao, S. Zhang, Z. Yan, W. Wang, J. Wang, PVP-Capped Silver Nanoparticles as Catalyst for Oxidative Coupling of Thiols to Disulfides, Chinese Journal of Catalysis, 30 (2009) 856-858.
[35] F. Rajabi, T. Kakeshpour, M.R. Saidi, Supported iron oxide nanoparticles: Recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides, Catalysis Communications, 40 (2013) 13-17.
[36] A. Saxena, A. Kumar, S. Mozumdar, Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols, Journal of Molecular Catalysis A: Chemical, 269 (2007) 35-40.
[37] D.A. Alonso, C. Nájera, I.M. Pastor, M. Yus, Transition-Metal- Catalyzed Synthesis of Hydroxylated Arenes, Chemistry – A European Journal, 16 (2010) 5274-5284.
[38] N. Koukabi, E. Kolvari, A. Khazaei, M.A. Zolfigol, B. Shirmardi- Shaghasemi, H.R. Khavasi, Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Chemical Communications, 47 (2011) 9230-9232.