Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Strengthening RC Columns Using Carbon Fiber Reinforced Epoxy Composites Modified with Carbon Nanotubes

Authors: Mohammad R. Irshidat, Mohammed H. Al-Saleh, Mahmoud Al-Shoubaki

Abstract:

This paper investigates the viability of using carbon fiber reinforced epoxy composites modified with carbon nanotubes to strengthening reinforced concrete (RC) columns. Six RC columns was designed and constructed according to ASCE standards. The columns were wrapped using carbon fiber sheets impregnated with either neat epoxy or CNTs modified epoxy. These columns were then tested under concentric axial loading. Test results show that; compared to the unwrapped specimens; wrapping concrete columns with carbon fiber sheet embedded in CNTs modified epoxy resulted in an increase in its axial load resistance, maximum displacement, and toughness values by 24%, 109% and 232%, respectively. These results reveal that adding CNTs into epoxy resin enhanced the confinement effect, specifically, increased the axial load resistance, maximum displacement, and toughness values by 11%, 6%, and 19%, respectively compared with columns strengthening with carbon fiber sheet embedded in neat epoxy.

Keywords: CNT, epoxy, Carbon fiber, RC columns.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337951

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858

References:


[1] Belouar A, Laraba A, Benzaid R, Chikh N. Structural Performance of Square Concrete Columns Wrapped with CFRP Sheets. Procedia Eng 2013;54:232–40. doi:10.1016/j.proeng.2013.03.021.
[2] Gambarelli S, Nisticò N, Ožbolt J. Numerical analysis of compressed concrete columns confined with CFRP: Microplane-based approach. Compos Part B Eng 2014; 67: 303–12. doi:10.1016/j.compositesb.2014.06.026.
[3] Trapko T, Musiał M. The effectiveness of CFRP materials strengthening of eccentrically compressed reinforced concrete columns. Arch Civ Mech Eng 2011;11:249–62. doi:10.1016/S1644-9665(12)60187-3.
[4] Nisticò N. R.C. square sections confined by FRP: A numerical procedure for predicting stress–strain relationships. Compos Part B Eng 2014;59:238–47. doi:10.1016/j.compositesb.2013.12.004.
[5] Rocca S, Galati N, Nanni A. Review of Design Guidelines for FRP Confinement of Reinforced Concrete Columns of Noncircular Cross Sections. J Compos Constr 2008;12:80–92. doi:10.1061/(ASCE)1090- 0268(2008)12:1(80).
[6] Mirmiran A, Shahawy M, Samaan M, Echary HE, Mastrapa JC, Pico O. Effect of Column Parameters on FRP-Confined Concrete. J Compos Constr 1998;2:175–85. doi:10.1061/(ASCE)1090-0268(1998)2:4(175).
[7] Wang L-M, Wu Y-F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test. Eng Struct 2008;30:493– 505. doi:10.1016/j.engstruct.2007.04.016.
[8] Wu Y-F, Wei Y-Y. Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns. Eng Struct 2010; 32: 32–45. doi:10.1016/j.engstruct.2009.08.012.