WASET
	%0 Journal Article
	%A Mário Silva and  Filipa Gomes and  Filipa Oliveira and  Simone Morais and  Cristina Delerue-Matos
	%D 2015
	%J International Journal of Biotechnology and Bioengineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 97, 2015
	%T Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
	%U https://publications.waset.org/pdf/10000165
	%V 97
	%X Brown seaweeds are abundant in Portuguese coastline
and represent an almost unexploited marine economic resource. One
of the most common species, easily available for harvesting in the
northwest coast, is Saccorhiza polyschides grows in the lowest shore
and costal rocky reefs. It is almost exclusively used by local farmers
as natural fertilizer, but contains a substantial amount of valuable
compounds, particularly alginates, natural biopolymers of high
interest for many industrial applications.
Alginates are natural polysaccharides present in cell walls of
brown seaweed, highly biocompatible, with particular properties that
make them of high interest for the food, biotechnology, cosmetics
and pharmaceutical industries. Conventional extraction processes are
based on thermal treatment. They are lengthy and consume high
amounts of energy and solvents. In recent years, microwave-assisted
extraction (MAE) has shown enormous potential to overcome major
drawbacks that outcome from conventional plant material extraction
(thermal and/or solvent based) techniques, being also successfully
applied to the extraction of agar, fucoidans and alginates. In the
present study, acid pretreatment of brown seaweed Saccorhiza
polyschides for subsequent microwave-assisted extraction (MAE) of
alginate was optimized. Seaweeds were collected in Northwest
Portuguese coastal waters of the Atlantic Ocean between May and
August, 2014. Experimental design was used to assess the effect of
temperature and acid pretreatment time in alginate extraction.
Response surface methodology allowed the determination of the
optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried
seaweed with constant stirring at 20ºC during 14h. Optimal acid
pretreatment conditions have enhanced significantly MAE of
alginates from Saccorhiza polyschides, thus contributing for the
development of a viable, more environmental friendly alternative to
conventional processes.

	%P 30 - 33